Serverless Map + Reduce with AWS Lambda

Lillian Choung (Ichoung) and Audasia Ho (audasiah)

Summary

We explore the power of AWS Lambda'’s microservice platform for serverless computing.
Our focus is upon massively parallel map problems, and we benchmark against typical
personal computers (4-core MacBook Pro) and more powerful academic computers (CMU
linux.andrew.cmu.edu with 40 cores).

Background

Key Components

e AWS Lambda, a serverless compute service that executes (and bills for) code as
needed, and scales automatically. Packaged Python code can be executed on each
invocation of Lambda.

API Gateway, a service for routing business logic on AWS
$3, a storage system on AWS

' :Jlt’llln

AP| Gateway

Lambda S3

For each of our example algorithms, the working dataset was uploaded onto S3, and read
in part by each Lambda invocation triggered by API call, with the result written back to S3
or passed back to the caller function.

Challenges

Each Lambda invocation had a limited amount of time (~1 min) to run before our API
Gateway request timed out, and a limited amount of memory (up to 1024 MB).

AP| Gateway and AWS Lambda both implement throttles to protect against
spamming/misuse. We had to stay mostly within 100 requests/second.

All scientific package dependencies (numpy, scipy) had to be packaged in a zip along with
our Lambda code. We had to run a Docker clone image of AWS Lambda runtime to install
the dependencies into a virtual environment that would have the same settings when
uploaded onto the actual AWS Lambda service.

Our Test Algorithms

We decided to implement two example algorithms, Mandelbrot set and Random forest,
in order to explore strong and weak scaling.

e Mandelbrot set, is an example of strong scaling, as we could have a fixed problem,
with fixed work, and distribute the work to P processors (Lambda functions) to
achieve speedup.

e Random forest training is an example of weak scaling, as each processor (Lambda
function) has a fixed set of work, but we can have variable amounts of work for the
problem.

Mandelbrot Set

We can generate the Mandelbrot set
in parallel since each point can be
calculated independently of other
points. The input of the algorithm are
dimensions of the image, as well as
the maximum number of iterations.
We can split the plane up by row and
calculate the values of each pointin a
row in parallel.

100

200

300

400

500
4] 100 200 300 400 500

https://www.docker.com/

Random Forest (Training)

Sl a5 We train random forests in parallel
since trees are independent. Each
|] tree is formed by randomly
[Rendom subset | [Random subset | [Rencom subset | subsetting the training data
Tree Tree Thes (consisting of rows of observed

features and the target variable),
é 6% ...and building a decision tree from a
random subset of features on each

o e e e A (= V21

Approach

Mandelbrot Set

We implemented the computation of the Mandelbrot set using Python. We used the
multiprocessing library in order to implement the parallel multi-core version of generating
the Mandelbrot set, which allowed us to utilize every core on the machine to compute the
rows of the image in parallel.

The main computational function of our implementation iterates through a row and
calculates the value for each index in the row, stopping when the function converges or
maximum iterations is reached. Our sequential algorithm uses this function to sequentially
iterate through all the rows in the plane, and sequentially calculates the value of each point
in the image. Our parallel version uses the multiprocessing library to parallelize the row
calculations, assigning the row calculation method to each core on the machine. This
generates a 2D array that can then be used the display the image.

Our Lambda version sends HTTP requests through the AWS API Gateway, with a request for
each Lambda function that we wanted to run. We used the library grequests in order to
send asynchronous requests. Each Lambda function would take in the size of the image,
the maximum number of iterations, and a list of the rows that the Lambda function should
be computing. The number of rows per function would be NUM_ROWS / NUM_LAMBDAS,
with work being evenly distributed to the lambdas. The Lambda function has a method
similar to the row computation, and the function calls this method for all of the rows in the
list it is given. The function then returns a dictionary, associating each row it was given with
the array of the values for that row. On the client side, we parse through the dictionaries

returned by each Lambda function and construct our 2D array needed to create the
Mandelbrot set image.

We then used the matplotlib library in order to plot the image for all of our algorithms, in
order to ensure that the Mandelbrot image was corrected generated.

Random Forest (Training)

Our dataset was from Lending Club. We used the scipy and numpy libraries in Python to
train trees that predicted whether a loan payment would be late based upon many (~15)
features such as loan amount, type, and financial situation. We parallelized across training
independent trees.

Our 4-core parallel version used multiprocessing, a Python library that allowed us to run
tree training threads on every core of our machine, reading from and writing to local
memory.

Our Lambda version sends via HTTP request (APl Gateway) one request for each tree in the
forest, using the asynchronous requests library grequests. The scipy and numpy libraries
were zipped and uploaded with the Lambda function, which reads the dataset from S3 and
calls the libraries to train each tree.

Results

Mandelbrot Set

We started off with
fixing the problem
1000 x 1000 Mandelbrot Set on Lambda for Mandelbrot set
2400 B Coidsians to the 1000 x 1000
== el plane case. We
18.00 wanted to first
explore the
speedup of the
problem over the
number of Lambda
functions that we
call. We were
o0 30 50 75 100 125 150 175 200 llmlted to caIIing
up to 200 Lambda
functions at a time,
as the API Gateway

12.00

Time (s)

6.00

Number of Lambda Functions

throttled us and would not produce reliable results consistently. From the graph, we see
that once the number of Lambda functions is greater than 125, the overall time it takes to
run the algorithm starts increasing. We feel that this is due to the number of rows not
decreasing greatly as we add more Lambda functions, but there is setup cost to spinning
up more functions, and it is not more efficient to have more Lambda functions. We also
found that the difference in the amount of time it would take for cold starts and warms
starts of the function was significant. This means that if the user wants to run the function
multiple times, it may be beneficial to run their function on Lambda, as the more times it is
run, the less impactful the cold start will be.

We also found that the
Price of Running 10,000 Instances of 1000 x . .
1000 price for running

- 10,000 instances of
this problem would
range from ~$9 to
~$16, depending on
the number of
Lambdas. The more
Lambda functions that
are called, the more it
costs overall, however
U 30 50 75 100 125 150 175 200 the Speedup is beSt

around 100-125
Lambdas. Thus, it
costs $0.0013080949
to run one instance of this problem on 125 Lambdas. We compare this to running functions
on AWS EC2, which would cost $0.023/hr for a single core machine. If a user doesn’t have
too many instances to run, it may be more beneficial to run their functions on Lambda, as
they will execute faster, and the user will only be paying for their compute time. However, if
a user wants to be continuously running functions, it may be more cost efficient to use AWS
EC2, as the cost of the core per hour is cheaper overall.

15

10

Cost (8)

MNumber of Lambdas

After exploring a single problem instance, we decided to also explore increasing the
problem size, to see if a larger problem size would be more efficient on Lambda, compared
to 4 core and 40 core machines. We ran our sequential and parallel version of our
algorithm on varying problem sizes, on a 4 core Macbook Pro and a 40 core Unix Machine.
We then compared this to running the same problems on AWS Lambda, using 200 Lambda
functions. We wanted to see in which instances it would be more cost effective and time
efficient to run on Lambda, compared to using a local machine.

400.00
300.00
)
o
£ 200.00
=
100.00
0.00

Mandelbrot Set for Different Machines

B 4 Core Seq

B 4 Core Par
40 Core
Seq

B 40 Core
Par

Bl Lambda
Algorithm

20

50 100 300

800

1000

Problem Size (n x n)

1500 2000 2500

We found that the time for sequential and parallel solutions on a 4 core machine
exponentially increase as the problem size increases, making them not as sustainable as
when the problem set is large. However, on a 40 core machine the parallel algorithm is still
relatively fast on large problem sets. This makes sense, as there are 40 cores to be utilized,
which means speedup is quite large. The Lambda algorithm is faster than all of the
algorithms, except for the parallel algorithm on the 40 core machine.

40 Core Linux Machine vs. Lambda Algorithm

60.00

45.00

30.00

Time (s)

15.00

0.00
2000

2500

3000 3500 4000

Problermn Size (n x n)

4500

5000

I 40 Core
Linux
Machine -
Parallel

B Lambda

Algorithm -

num
lambdas =
min(size!
10, 200)
Lambda
Functions

Even on problems
with size up to 5000 x
5000, the 40 core
parallel algorithm still
runs faster than the
Lambda Algorithm.
However, we also
observe that the
Lambda function
specific methods take
a shorter time than
the 40 core parallel
solution, and it is the
setup and processing
time on the client side

that makes the Lambda function overall take longer than the 40 core parallel algorithm.

Thus, if the user is able to make the client side code more efficient, it may eventually have
the Lambda function run faster than the parallel 40 core algorithm.

So, we would make the following suggestions:

If a user has access to a 40 core or more machine, they are better off using a parallel
algorithm on that machine than to implement the algorithm on AWS Lambda.

This is because currently the speedup from a 40 core algorithm to the Lambda function is
0.78x. Thus, the 40 core parallel solution is faster than the Lambda function. However, if

the user is able to efficiently process the data that is returned from the Lambda functions,
then, at larger datasets the Lambda functions may overtake the 40 core algorithm in time.

It is also beneficial to use the 40 core machine, as there are no billing costs to use it. Using
AWS Lambda will cost the user money to run the functions, and it may not be worth it to
them. It also takes time to set up AWS Lambda and there is a learning curve, thus if a user
only wants to run the function a couple times without having a large learning curve, it may
be better for them to use a 40 core machine.

If a user only has access to a 4 core machine, it is beneficial for them to use AWS
Lambda to run their algorithms.

This is because the current speedup for large problem sets from 4 core to Lambda is
around 6.08x. This is for the 2000 x 2000 problem, and as the problem space increases, the
parallel algorithm on a 4 core machine will still exponentially grow, as there are only 4
cores that can be utilized at the same time.

If a user wants to run their function multiple times, and wants to have the results quickly, it
is worth the money to run it on Lambda. Running their function on a 4 core machine takes
exponentially more time, which means more waiting for them. If they only want to run it a
small amount of time, then they could run it on their 4 core machine, it would just take
much longer; however it would be free. However Lambda would be a beneficial solution if
they anticipate running their function many times, or if the result is time sensitive.

There is a lack of speedup, as we are unable to call more than 200 Lambda functions at
once, as the APl Gateway limits us. This means that eventually there will be a linear
increase in time it takes for the Lambda functions to run, as we cannot spin up more than
200 functions at a time. Furthermore, the APl Gateway also has a timeout, which means
that all Lambda functions must finish and return in <1 minute. If not, there is a possibility of
the APl Gateway stopping the function, and we would be unable to get a response.

For Mandelbrot, as the problem space got larger, there was more communication and
overhead from the client side, as it had to process more and more responses from the
Lambda functions. Thus, we would not recommend running large Mandelbrot sets on AWS

Lambda. Thus, we cannot currently recommend strong scaling problems to be run on AWS
Lambda, due to the constraints on how many Lambda functions can be called, and having
larger and larger problems to run.

Random Forest

Latency of Lambda Requests (Random Forest)

30
Bl Cumn. Avg [Cold avg | Warm avg

22.5

1 . 5
B 16 32 64 128

trees { =# lambda threads)

3]

(s)

tn

512

We fixed the amount of work each lambda thread does (1 tree each), and grow the
number of trees. The above graph shows the result of doubling the amount of work done
by the system as whole on each test. Note that in general, time taken stays fairly constant
as the work increases, up until we try 512 threads. This is because at 512 threads, we are
reaching the upper boundary of requests per second that Lambda can handle, and many
computations fail to return. So this is an upper bound on the number of invocations of this
problem we can run. Also note that there is a small increase in runtime from 32 to 64 to
128 threads. This is due to a mixture of overhead on the caller side, keeping all the
connections open, and significantly Lambda threads just running slower when there are
more of them called at the same time, probably due to AWS scheduling rules which are not
disclosed to us.

Runtime of Random Forest

160 B 4-Core
Il Lambda

120

(s)

80

40

frees
Unsurprisingly, the runtime of
Speedup (RF, Lambda vs 4-Core Macbook) Lambda is much better than that
10 of the 4-core machine, since
Lambda can run each tree
75 “simultaneously” but the 4-core

machine can only compute as
many trees at a given moment as
it has contexts available.

Speedup
(4]

25
On the left, notice that we have

0 sub-linear speedup for Lambda
over 4-core Macbook below
n_trees = 16. Then it gets better.

Trees

Why? A tree can typically be computed on Lambda in 16s, on local machine in 8s. The extra
8s includes start-up times and communication overhead. On warm start, in fact, we can
compute a single tree on Lambda in 10s!

** We wanted to compare against linux.andrew.cmu.edu too, but had permissions trouble
installing alternate Python packages and distributions there.

Variance of Runtime (Random Forest)

20 B Lambda
B 4-Core

15

s)

10

8 16 32 64 128

Number of Trees

Interestingly, Lambda exhibited less variance in runtime than running on our local
machine. This was unexpected since we thought that the HTTP connection + black box AWS
scheduler would vary more. The personal computer may sometimes schedule our Python
program behind that of other user processes.

Conclusion

In conclusion, we found that there is a small window of problems that may be useful to run
on AWS Lambda. We suspected that memory and time limitations on the platform would
be problematic, as well as relatively high cost of HTTP communication, excluding many
complex algorithms where “threads” may need to talk to each other.

Putting $$ costs into account, we concluded that for problems that we've identified to be
well parallelizable on Lambda, if they are medium sized one-off computations that don't
require thousands of threads, and the user has no access to large-core machines or GPUs,
then Lambda could be a good choice. It does, however, have a large learning curve since
the platform is not built for scientific parallel computing purpose. Furthermore, code that
runs for longer periods of time or more often should be done on a EC2 instance (or you can
maintain your own servers for it) because it is more cost efficient in that case.

Equal work was performed by both project members.

References

1. https://en.wikipedia.org/wiki/Mandelbrot_set

2. https://www.ibm.com/developerworks/community/blogs/ifp/entry/How To Comput

e_Mandelbrodt Set Quickly?lang=en

https://docs.python.org/2/library/multiprocessing.html

https://aws.amazon.com/documentation/lambda/

5. https://medium.freecodecamp.com/escaping-lambda-function-hell-using-docker-40b187e
c1e48

w

B

https://aws.amazon.com/documentation/lambda/
https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.ibm.com/developerworks/community/blogs/jfp/entry/How_To_Compute_Mandelbrodt_Set_Quickly?lang=en
https://medium.freecodecamp.com/escaping-lambda-function-hell-using-docker-40b187ec1e48
https://docs.python.org/2/library/multiprocessing.html
https://medium.freecodecamp.com/escaping-lambda-function-hell-using-docker-40b187ec1e48
https://www.ibm.com/developerworks/community/blogs/jfp/entry/How_To_Compute_Mandelbrodt_Set_Quickly?lang=en

